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A COMPUTER PROGRAM FOR THE CALCULATION
OF DAUBECHIES WAVELETS

1. Introduction

Recently, it has been found that there exist other sets of functions that can serve as an
orthonormal basis for the set of all square summable functions, L%(R) [1-6]. In particular,
it has been shown that for all g(t) € L?(R), and for a certain prescribed function v(t),

9gt)E S g V2U(2i(t - 277k)), (1)

Jk€ZXZ

where o
gie =V [ gt (2(t = 27K))dt. (2)

and Z denotes the integers. Here, the basis set is {ﬁ?j)(?j(t — 277k))} xezxz and the
function ¥(t) is called the wavelet. Furthermore, the function w(t) is significant only over a
small (compact) portion of the real line. Therefore, it is recognized that this representation
lias a sense of ‘time locality.’

For ¥(t) to be admissible as a basis function, its Fourier transform must obey certain
properties. In particular, for an admissible ¥(t) it can be shown that

/_Z Y(t)e~ 2t = U(f) = A(%)@(é) (3)
where
K(f)y=e > H(f+1/2), (4)
H(f)= S hk)e ", (5)
k=—o0
o(f) = 3 H(2f), (6)
p=1

and {h(k)}rez is a sequence such that the following properties hold:

(i) |1H(0)| = 1,
(i1) h(k) ~ O(k?) as k — oo,
(i) |[H(HP+ |H(f+1/2)]2 =1,
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(iv) |H(f)| # 0 for f € [0,1/2).

Note that the inverse Fourier transform of O(f) is called the scaling function. i.e.,

o(t) = [~ eer=iaf. (7)

The difference between the wavelet and its associated scaling function is rooted in the
difference between spanning different subspaces that compose the space L2(R). It can be
shown that one can define a series of subspaces V; for j € Z such that U;cz Vj is dense in
L*(R), V; C V41, g(t) € V; if and only if g(2t) € Vj4; for all j € Z, and g(t) € V; if and
only if g(t — 277k) € Vj; for all j,k € Z. The significance of the scaling function is that
the set {\/-“2_10(21(t — k))}kez spans the subspace V;. On the other hand, one can show that
there exists a subspace O; composed of functions that are orthogonal to those composing
17 such that

O; PV; = Vin, (8)
where @ denotes the Cartesian product. Thus, one can show that
U 0; = L¥(R). (9)
j€z

The significance of the wavelet is that the set {ﬁd)(?’(t — 277k)) }rez spans the subspace
O;. More generally, the set {V/27U(2/(t — 277k))}, xezxz spans L(R).

The results presented above suggests that one can, to some degree, control the shape
of the wavelet in the time domain according to how one chooses the sequence {i(k)}iez-
One desirable property is to have a wavelet with compact support in the time domain, i.e.,
it is time limited in that it is nonzero only over a given interval. Such a wavelet gives a true
sense of time locality. A set of orthogonal wavelets with compact support was discovered by
Daubechies [2]. They are parameterized by an integer n, are real valued, and are denoted

as Un(t) for n > 2. In fact,

supp ¥ C [(1 = n),n]. (10)
These wavelets are derived by choosing the sequence {h(k)}iez so that it is of finite length.
The result is the set of sequences {h,,(k)}ii"o'” forn =1,2,3,.... Details of the procedure

for finding these sequences can be found in Daubechies’ original paper [2].

Daubechies wavelets posses other desirable properties. It can be show that they are
bonnded, continuous functions for all n, and for n > 4, they are continuously differentiable.
Furthermore, for n > 4, Daubechies wavelets have a finite spectral spectral variance, i.e.,

for Wo(f) « wn(t), then

|~ PP < oo. (1)
Proof of these properties can be found in [4].
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2. Basic Method of Calculating Wavelets

Equations (3) to (6) suggest how one can calculate the Fourier transform of a Daubeclies
wavelet and its associated scaling function. For ©,(f) « 6,(t), one first calculates (approx-
imates) the Fourier transform of the scaling function via the equation

P
On(f) = [ Ha(277f), (12)

p=0

where .
Ho(f) = Y ha(k)e 2%, (13)

k=0

Once ©,(f) is found, one calculates the Fourier transform of the orthogonal wavelet as

(] f
\pn(f) ~ I\n(i)en (5)1 (14)
where

Ko(f) = e 2™ H(f +1/2). (15)

The truncated product in Eq. (12) gives good results for P = 20 for low values of n (n = 3),
to P = 25 for high values of n (n = 13). This was checked by calculating the normalized
cross correlation between two Daubechies wavelets of order n, where one was derived by
using P = N, and the other with P = N + 1. For P = 25 (or P = 20 for low values of n)
the correlation was negligibly different from 1.

Once the Fourier transforms of the Daubechies wavelet and scaling function have been
calculated, one can find the associated time domain functions by invoking the inverse Fourier
transform. This can be accomplished efficiently through the use of a fast Fourier transform

(FFT).

The program listed in Appendix A uses the approach outlined above to calculate
Daubechies wavelets and their scaling functions, and is written in VAX extended FOR-
TRAN. The program produces four sequential ASCII files containing sampled versions of
the functions ¥,(t) and 8,(t) and the magnitudes of their Fourier transforms. Certainly one
can modify the program to produce the complex Fourier transform. An ASCII file is also
produced containing the parameters input to the program by the user.

3. Running the Program

Program WAVE is designed to be run interactively, and produces sampled versions
of the Daubechies wavelets and their associated scaling functions for n = 2.3....,15. It is
written using double precision, and can take several minutes of wall clock time to run. The
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program makes use of a radix 2 FFT as an efficient way of numerically calculating a Fourier
integral.

The program needs only one input file, COEFF.DAT, which is listed in Appendix B.
This file contains the finite length sequences {h,(k)}3"5'. All otlier required parameters are

input from the terminal. They are:

1. n: The order of the wavelet, an integer form 2 to 15.

[ 2]

npower: The power of 2 yielding the FFT size. For example, npower = 5 implies that
the FFTs used in the program are of size 2°.

3. f,: Time domain sampling rate in Hertz of ¥,(t) and 8,(¢).

4. tter: The number of product iterations used to calculate the Fouricer transform of the
scaling function as given in Eq. (12), and is the equal to P in that equation. Usually
a value of 20 to 23 is a good choice.

These inputs are written to the file WAVE.ECHO. Therefore. the file serves as a record of
a single program run.

Among the remaining four ASCII files produced by the program are WAVELET.TIME
and SCALE.TIME, which contain the sampled versions of the wavelet and scaling function.
Specifically, they contain ¥,(i/f,) and 8,(i/f,) where ¢ is an integer and —2"Pover—! < 7 <
2npower=1 _ 1. Similarly, WAVELET.SPEC and SCALE.SPEC contain ¥,(if,) and 0,(if,)
respectively, where 0 < 1 < 2"P°wer — 1. All files contain ordered samples of the functions
in column form. For example, WAVELET.TIME contains two columns of numbers in the

following form:

w((=2"Pwer=l)/ f,)
(1 = 2moweriy/ )
U((2 = 2mPeverml)/ f,)
(8 =27/ 1,)

)

o> Yt

gnpower : w((anower-l — 1)/}")

Figures 1 through 4 show plots of the contents of the four output files generated by
WAVE for n = 5, npower =9, f, = 30Hz., and iter = 25.
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Figure 1. The contents of the file WAVELET.TIME which is a sampled version of the
wavelet 15(t).
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Figure 2. The contents of the file WAVELET.SPEC which is a sampled version of the
wavelet spectrum ¥s(f). Only the first 100 points are shown.
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Figure 3. The contents of the file SCALE. TIME which is a sampled version of the scaling
function 85(t).
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Figure 4. The contents of the file SCALE.SPEC which is a sampled version of the scaling
function spectrum ©s(f). Only the first 100 points are shown.
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Appendix A

FORTRAN SOURCE CODE FOR PROGRAM WAVE

program wave

¢ This program calculates a wavelet and its spectrum. Note that

¢ the sign (of the exponential argument) of the Fourier transform
¢ conforms to the conventional definition found in the engineering
¢ literature.

implicit none

real*8 h(50),whigh,wlow,deltaw,deltaw2,delta,w,fhigh,ts
real*8 zreal(8192),yreal(8192)

complex*16 htrans,gtrans,x,y(8192),z(8192)

integer n,npower,iter,nsize,i,]j

external htrans
external gtrans

¢ Open output files containing the spectrum and time series of the
¢ wavelet and scaling functions.

open{unit=20,file='scale.spec’,status=’new’,
& access=’sequential’)

open(unit=10,file=’wavelet.spec’, status=’new’,
& access=’sequential’)

open(unit=31,file='scale.time’,status='new’,
4 access=’sequential’)

open(unit=41,file=’wavelet.time’, status=’new’,
& access='sequential’)

c Retrieve impulse response.

write(6,1000)
1000 format(/,’ enter wavelet order n: ’,$)




read(5,1010) n
1010 format(bn,iS)

call read_coeff(h,n)

write(6,4000)
4000 format(/,’ Enter sampling frequency: ’,$)
read(5,4010) fhigh
4010 format(£10.7)
ts = 1.0/fhigh
whigh = 2.0%3.141593*fhigh

write(6,4020)

4020 format(/,’ Enter power of 2 for number of samples: ’,$)
read(5,4030) npower

4030 format(bn,i5)

write(6,4040)
4040 format(/,’ Enter number of iterations: ’,$)
read(5,40292) iter

if (npower .1t. 1 .or. npower .gt. 13) then
type *, ’ power of 2 out of range '’
stop

endif

c Open output file and echo input data.

open(unit=50,file=’wave.echo’,status="new’,
& access=’sequential’)

write(50,1900) n,(2**npower),npower,fhigh,whigh,ts,iter

)

1900 format(’ From program wave: ’,

&//,’ wavelet order = ’,i3,

& /,” FFT size = ’,1i5,’ ( power of 2 = ’,i3,’ )’,

& /,’ Maximum frequency of calculated spectrum = ’,ell.5,’ Hz’,
/) = ?,e11.5,” Rad/S’,
& /,’ sampling rate = ’,ell.5,’ S’,

& /,’ number of iterations for calculating spectrum = ’,i4)

close(unit=50)
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¢ Calculate Fourier transform.

nsize =2**npowver

wlow = 0.0

deltaw = (whigh-wlow)/float(nsize-1)
deltaw2 = delta/2.0

w = wlow

j=1

write(6,5610)
5610 format(/,5x,’ << Calculating scaling function spectrum >>’)
do i = 0,(nsize-1)
w = deltawxfloat(i)+wlow
call phi_spec(x,w,h,n,iter)
y(i+1) = x*(whigh-wlow)
write(20,5000) i,cdabs(x)
5000 format(1(2x,i6,2x,e11.5))
enddo

write(6,5611)
5611 format(/,5x,’ << Calculating wavelet spectrum >>’)
do i = 0,(nsize-1)
w = deltawxfloat(i)+wlow
call phi_spec(x,w/2.0,h,n,iter)
2(i+1) = -1.0*x*gtrans(w/2.0,h,n)
write(10,5000) i,cdabs(z(i))
enddo

Note that the use of the IFFT here is only as a numerical
integration. Furthermore, note that you are integrating

only over the right half of the spectrum, consequently the resulting
impulse response is complex (the analytic signal). Note that the
true impulse response is equal (proportional) to the real part.

The wavelet and scaling functions are normalized (unit energy)

prior to writing them to the output files.

O 0 N 0o 0 00

do i = 1,nsize
y(i) = ((-1.0)**(i-1))*y(i)
z(1) = ((-1.0)*=*(i-1))=*z2(3)
enddo

call ifft(y,npower)
call ifft(z,npower)

11




do 1 = 1,nsize

yreal(i) = dreal(y(i))
zreal(i) = dreal(z(i))
enddo

call normalize(yreal,ts,nsize)
call normalize(zreal,ts,nsize)

do 1 = 1,nsize
write(31,5000) (i-1-nsize/2),yreal(i)
write(41,5000) (i-1-nsize/2),zreal(i)
enddo

end
subroutine read_coeff(h,n)

¢ This subroutine reads the impulse response from the
¢ data file coeff.dat.

integer i,n
real*8 h(1)

open(file=’coeff.dat’,status=’old’,access=’sequential’,
%4 unit=99)

do while (i .ne. n)
read(99,1000) h(1),i
1000 format(£14.7,15)
enddo

read(99,1010) (h(i), i = 2,2*n)
1010 format(f14.7)

write(6,1999)
1999 format(/,’ spectrum coefficients:’)
vrite(6,2000) ((i-1),h(i), i = 1,2*n)
2000 format(2x,’h(’,i2,?’) = ’,£10.7)

close(unit=99)

return
end

12




complex*16 function htrans(w,h,n)

integer n
real*8 h(1),w

htrans = (0.0,0.0)
do i = 1,(2*n)
htrans = htrans+h(i)
yA *dcmplx(cos(float(i-1)*w),-sin(float(i-1)*w))

enddo

htrans = htrans/(1.414214,0.0)

return
end

complex*16 function gtrans(w,h,n)

integer n
real*8 h(1),w
complex=*16 htrans

external htrans

gtrans = dcmplx(cos(w),-sin(w))*conjg(htrans((w+3.141593),h,n))

return
end

subroutine phi_spec(x,w,h,n,iter)

¢ This subroutine calculates the spectrum of the
c wavelet (as in Daubechies’ definition) at the

¢ frequency w.
integer n,iter,1
complex*16 x,htrans

real*8 h(1),w
external htrans

x = (1.0,0.0)
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1,iter
x*htrans((w/(2.0%*1)) ,h,n)

do 1
X
enddo

return
end

subroutine fft(x,m)

¢ This subroutine calculates an FFT of size 2**m. It is an
¢ ‘in-place’ algorithm.

complex*16 x(1),u,w,t
n = 2%*m

pi = 3.14159265358979
do 201 =1,m

le = 2%*(m+1-1)

lel = le/2
u = (1.0,0.0)
v = demplx(cos(pi/float(lel)),-sin(pi/float(lel)))

do 20 j = 1,lel

do 10 1 = j,n,le

ip =1 + lel

t = x(1) + x(ip)

x(ip) = (x(i) - x(ip))*u

10 x(i) = ¢

20 u = u*w
nv2 = n/2
nmi = n-1
j=1

do 30 i = 1,nml
if (i .ge. j) go to 25
t = x(j)
x(j) = x(i)
x(i) = ¢
25 k = nv2
26 if (k .ge. j) go to 30
j=3%k
k = k/2
go to 26
30 j = j+k
return
end
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subroutine ifft(x,n)

¢ This subroutine calculates the inverse FFT of the array x.
complex*16 x(8192)
integer n,nsize,i

real*8 realn

nsize = 2%x*n
realn = float(nsize)

do 1 = 1,nsize
x(i) = conjg(x(i))
enddo

call fft(x,n)

do 1 = 1,nsize
x(i) = conjg(x(i)/realn)
enddo
return
end

subroutine normalize(x,ts,nsize)
¢ This subroutine energy normalizes a real time series.

integer nsize
real*8 x(nsize),ts,sum

sum = 0.0
do 1 = 1,nsize

sum = sum+x(i)*=*2
enddo
sum = sqrt(sum)
do i = 1,nsize

x(i) = x(i)/sum
enddo

return
end
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Appendix B

SEQUENCES FOR DAUBECHIES WAVELETS

Listed below is the file COEFF.DAT used by program \WAVE. It contains the
sequences {hn(k)}! for n = 2,3,...,15. It is formatted according to the state-
ment format(f14.7,i5). The first column lists the values of h,(k). The sccond
column lists n, and marks the begining of the sequence. For example, for n = 3,
we have hj3(1) = 0.332670552950, /13(2) = 0.806891509311, h3(3) = 0.459877502118,

h3(4) = —0.135011020010, h3(5) = —0.085441273882, and h3(6) = 0.035226291882.

.482962913145 2
.836516303738
.224143868042
~.129409522581
.332670552950 3
.806891509311
.459877502118
-.135011020010
-.085441273882
.035226291882
.230377813309 4
.714846570553
.630880767930
-.027983769417
-.187034811719
.030841381836
.032883011667
-.010597401785
.160102397974 5
.603829269797
.724308528438
.138428145901
-.242294887066
-.032244869585
.077571493840
-.006241490213
-.012580751999
.003335725285
.111540743350 6
494623890398




.751133908021
.315250351709
226264693965
.129766867567
.097501605587
.027522865530
.031582039318
.000553842201
.004777257511
.001077301085
.077852054085
.396539319482
.729132090846
.469782287405
.143906003929
.22403618499%4
.071309219267
.080612609151
.038029936935
.016574541631
.012550998556
.000429577973
.001801640704
.000353713800
.054415842243
312871590914
.675630736297
.585354683654
.015829105256
284015542962
.000472484574
.128747426620
.017369301002
.044088253931
.013981027917
.008746094047
.004870352993
.000391740373
.000675449406
.000117476784
.038077947364
.243834674613
604823123690

18




.657288078051
.133197385825
.293273783279
.096840783223
.148540749338
.030725681479
.067632829061
.000250947115
.022361662124
.004723204758
.004281503682
.001847646883
.000230385764
.000251963189
.000039347320
.026670057901
.18817€6800078
.527201188932
688459039454
.281172343661
249846424327
.195946274377
.127369340336
.093057364604
.071394147166
.029457536822
.033212674059
.003606553567
.010733175483
.001395351747
.001992405295
.000685856695
.000116466855
.000093588670
.000013264203
.018692339500
.144048360129
.449822419238
.685506451221
.411710892303
.162485521339
.274320974144
.066025638763

10

11

19




o O

O O O O O O I

I O O 1 O O t

it O O

o O

.149791844607
.046504355457
.066445800596
.031336714900
.020839548328
.015365977170
.003339972936
.004928945867
.000308709907
.000893056839
.000249184997
.000054438816
.000034637754
.000004494745
.013114280902
.109587064387
.377449392844
.657445006413
.516294170295
.044313624533
.315809615475
.023471399498
.182806918672
.005686977952
.096186633657
.010995853244
.041627451082
.012180151045
.012829445168
006713258423
.002249393038
.002179176553
.000006459278
.000388621871
.000088486615
.000024241195
.000012775434
.000001528836
.009204916897
.082889405900
312115898739
.611313131287
.589096065406

12

13

20




1O O 1 O O i

O O

o O

O O O O O O O

It O O |

o O

.086639694877
.316237370186
.126430468961
.177816118862
.071915527849
.106342427892
.026758244166
.056034390582
.002363616024
.023833745174
.003917927648
.007254616037
.002760408506
.001315670455
.000932006061
.000049301053
.000165090932
.000030664729
.000010440501
.000004699171
.000000521846
.006547491642
.063360170581
.259953209778
.569486757657
.659765991407
.253248224211
.245883485949
.207221475070
.141972692112
.144030955893
.083519992219
.071278880702
.054864716315
.027555092282
.029754599557
.005754062318
.012711190182
.000664409841
.003831834380
.001038385046
.000708200880
.000381870689
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.000042656957
.000068164760
.000010124883
.000004370468
.000001706613
.000000176357
.004129483519
.041776513906
.179077334434
.407237141256
.472918366318
.110408203455
.385470269520
.386018759764
.027435955232
.154106559944
.072306793965
.118765098585
.038151205753
.052121808971
.030285642429
.020301136317
.016290846193
.004432020222
.006931177432
.000000520974
.002017749394
.000450763331
.000363203984
.000171774677
.000023620852
.000029991608
.000003944981
.000001876185
.000000681954
.000000067409
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